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Patchy environment as a factor of complex plankton dynamics
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We study the role of the diffusive interaction in plankton dynamics in a patchy environment. We use a
minimal reaction-diffusion model of the nutrient—plankton—fish food chain to simulate the diffusive interac-
tion between fish-populated and fish-free habitats. We show that such interaction can give rise to spatiotem-
poral plankton patterns. The plankton dynamics depend on the fish predation rate and can exhibit both regular
and chaotic behavior. We show that limit cycle and chaotic attractor coexist in the system. The entire basin of
attraction of the limit cycles is found to be riddled with ‘‘holes’’ leading to the competitive chaotic attractors.
The chaotic dynamics is typical of a wide range of the fish predation rates.
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I. INTRODUCTION

There is a growing interest in the chaotic dynamics
ecological systems@1#. In this paper we focus on the chaot
and regular dynamics of plankton populations in a patc
environment. Most of the works concerned with the tempo
behavior of a biological community do not take into accou
its spatial structure. However, the spatial distribution of na
ral populations is usually remarkably inhomogeneous. In
restrial ecosystems, the inhomogeneity of the spatial dis
bution of the populations is to a large extent controlled
the inhomogeneity of the environment. Very high mobility
the marine environment would prevent the formation of a
stable patchy spatial distribution with much longer life-tim
than the typical times of the biodynamics. However, in ad
tion to very changeable transient spatial patterns, in ma
environment there also exist other, much more stable st
tures associated with ocean fronts@2,3#, cyclonic rings@4#,
and so-called meddies@5#. This fact creats the biologica
basis for considering the dynamics of marine communitie
a patchy environment. In this connection, it should be no
that the temporal dynamics of a community can depend
nificantly on the spatial structure of its environment@6–8#.

Conceptual minimal models are an appropriate tool
searching and understanding basic mechanisms of sp
pattern formation and temporal dynamic behavior of intera
ing chemical substances or biological species. Such an
proach goes back to the classic paper by Turing@9#, where it
has been shown that the nonlinear interaction of at least
agents with considerably different diffusion coefficients c
give rise to spatial structure. Segel and Jackson@10# were the
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first to apply Turing’s idea to ecology, having considered t
dissipative instability in the predator-prey interaction of ph
toplankton and herbivorous copepods with higher herbiv
motility. Levin and Segel@11# suggested this scenario of sp
tial pattern formation as a possible origin of plankton
patchiness. The usefulness of minimal models has been d
onstrated in the following studies of plankton patchiness a
phytoplankton blooms@12,13,15,17#. Recently, the effects o
external hydrodynamical forcing in the appearance of n
equilibrium spatiotemporal plankton patterns were stud
@19–21#. Conceptual models have been also applied to inv
tigate the plankton pattern formation resulting from plan
tivorous fish school walks without any hydrodynamical for
ing @7,22,23# and the formation of irregular self-sustaine
spatial patterns uncorrelated with the properties of the e
ronment @24,25#. Predator-prey limit-cycle oscillations
plankton fronts propagation, and the generation and drif
planktonic Turing patches were found in a minim
phytoplankton-zooplankton interaction model@26,27# that
was originally formulated by Scheffer@28#. The emergence
of diffusion-induced chaos has been found by Pascual@29#
along a linear nutrient gradient in the same model with
fish predation.

In this paper, using a one-dimensional~1D! minimal
reaction-diffusion model of the nutrient – phytoplankton
zooplankton – fish food chain we show that:

~1! The diffusive interaction between different habitats
a patchy marine environment, while some of the patches
populated by fish and others may be fish free, can give ris
plankton spatial patterns;

~2! Plankton dynamics depend on the fish predation r
and can exhibit regular and chaotic behavior. Coexistenc
a limit cycle and a chaotic attractor with Cantor setlike b
©2001 The American Physical Society15-1



nk
de

o

ns

m
r-
el
ly
g

ra
on
o

ua

d
h

a
p

is
e

e
th

e

th

t

on
rbu-

m-

,

ed
e
hes.

ults
ime
ux

ys-
so-
n
are

akes

rves

ALEXANDER B. MEDVINSKY et al. PHYSICAL REVIEW E 64 021915
sins of attraction is characteristic of the model chaotic pla
ton dynamics. The chaotic dynamics is typical for a wi
range of parameters.

II. MODEL

We consider the 1D two-component basic marine fo
chain model where at any pointX and timet, the dynamics
of phytoplanktonP(X,t) and zooplanktonH(X,t) popula-
tions are given by the following reaction-diffusion equatio
@26,28–30#:

]P

]t
5RPS 12

P

K D2
AC1P

C21P
H1DPDP, ~1!

]H

]t
5

C1P

C21P
H2MH2F

H2

C3
21H2

1DHDH. ~2!

Here,F is the fish predation rate on zooplankton. The para
etersR, K, M, and 1/A denote the intrinsic growth rate, ca
rying capacity of phytoplankton, the death rate, and yi
coefficient of phytoplankton to zooplankton, respective
The constantsC1 , C2, and C3 parametrize the saturatin
functional response.DP andDH are the diffusion coefficients
of phytoplankton and zooplankton, respectively.D is the
Laplace operator. The dependence of the zooplankton g
ing rate on phytoplankton is of type II, while the zooplankt
predation by fish follows a sigmoidal functional response
type III ~according to@28,31#!. The model can be simplified
by introducing dimensionless variables. Following Pasc
@29#, we introducep5P/K and h5AH/K. Space is scaled
by the size of the numerical meshL/k, whereL is the total
length of the considered area andk11 is the number of
nodes of the mesh. Thus,L/k is the scale of the expecte
patterns. Time is scaled by a characteristic value of the p
toplankton growth rateR0. Thus,x5kX/L, andt5R0t. As a
result, Eqs.~1! and ~2! become

]p

]t
5rp~12p!2

ap

11bp
h1dpDp, ~3!

]h

]t
5

ap

11bp
h2mh2 f

nh2

n21h2
1dhDh, ~4!

where the new parameters arer 5R/R0 , a5C1K/(C2R0),
b5K/C2 , m5M /R0 , n5C3A/K, dp5k2DP /(L2R0), dh
5k2DH /(L2R0), f 5FA/(C3R0).

Considering the dynamics of the plankton community in
spatially structured marine environment suggests that the
rameters in Eqs.~3! and~4! are coordinate dependent. In th
paper we assume that the inhomogeneity of the environm
affect only the fish population, i.e., the fish predation ratf
5 f (x), whereas all other parameters are constant. For
sake of simplicity, we assume thatf is equal to a certain
constant value in the fish-populated patches, otherwisf
50.

The diffusion terms in Eqs.~1! and~2! often describe the
spatial mixing of the species due to the self-motion of
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organisms@32#. However, in natural waters it is turbulen
diffusion that is supposed to dominate plankton mixing@30#.
Taking this into account, we consider both phytoplankt
and zooplankton as passive contaminants of the water tu
lent motion. In this casedp5dh5d. Using the relationship
between turbulent diffusivity and the scale of the pheno
enon in the sea@30#, with the minimum phytoplankton
growth rateR0 given by 1026 sec21 ~cf. @33#!, the charac-
teristic lengthL/k of about 2km typical of plankton patterns
one can show thatd is about 531022.

For numerical integration of Eqs.~3! and ~4!, a simple
explicit difference scheme is used. The 1D space is divid
into a grid of 64 finite-difference cells of unit length. Th
border between habitats divides the space into two patc
The time step is set equal to 1022. Repetition of the integra-
tion with smaller step size showed that the numerical res
did not change, ensuring the accuracy of the chosen t
step. The plankton dynamics is investigated with no-fl
boundary conditions. The initial distributions forh andp are
uniform and the same for both the habitats.

III. THE DEPENDENCE OF THE SPATIOTEMPORAL
PLANKTON DYNAMICS ON THE FISH PREDATION RATE

Figure 1 demonstrates the solution diagrams of the s
tems~3! and ~4!, i.e., the dependence of the steady-state
lution ~underdp5dh50) on the fish predation rate. One ca
see that the phytoplankton-dominated stationary states
typical for high fish predation ratef. When loweringf, an
unstable and another stable steady-state appear, which m

FIG. 1. Solution diagrams of the models~3! and ~4! for the
following set of parameters:r 55, a55, b55, m50.6, n50.4.
This set of parameters is used throughout the work. The cu
display the steady-state solutions for different values off. H denotes
a Hopf bifurcation.
5-2
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FIG. 2. Spatiotemporal plank
ton patterns emerged from ini
tially homogeneous plankton dis
tributions in the two-habitat
system for ~a! f 50.05, ~b! f
50.18, and~c! f 50.395; x is the
spatial coordinate,t is time. The
darker regions correspond t
lower plankton densities.
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the system bistable. Further loweringf, the bistability disap-
pears in a saddle-node bifurcation. For a lower value off, at
point H, a Hopf bifurcation occurs, destabilizing th
zooplankton-dominated steady-state while creating a st
limit cycle. Particularly, it means that in the absence of fi
( f 50), the local kinetics of the system is oscillatory~for all
other parameters, as in Fig. 1!. Notice that atdp5dh , both a
stable steady state and a stable limit cycle of a ‘‘point’’ sy
tem are kept for a homogeneous distribution.

The sophisticated treatment of local properties of mod
similar to the models~3! and ~4! have been carried out in
works @20,28,34,35#.

Let us consider the simplest example of a spatially str
tured ecosystem consisting of two patches only. The dyn
ics in both the patches obeys Eqs.~3! and~4!, and in one of
the patchesf 50, i.e., fish is absent~for example, due to
local changes in temperature or salinity!. Figure 2 shows
three sets of the 1D plankton spatial patterns that have b
emerged from initially~at t50) homogeneous plankton dis
tributions as a result of the diffusion interaction of the hab
populated by fish~for x<32) with f 50.05 @Fig. 2~a!#, f
50.18 @Fig. 2~b!#, and f 50.395 @Fig. 2~c!#, and the patch
(x.32) where fish is absent (f 50). It is readily seen~cf.
Fig. 1! that the valuesf 50.05 andf 50.18 correspond to
oscillatory plankton kinetics, whilef 50.395 corresponds to
the zooplankton-dominated steady state. One can see
increase of the fish predation rate is followed by transitio
from rather regular plankton patterns@see Fig. 2~a! for f
50.05# to irregular ones@Fig. 2~b! for f 50.18# and then to
virtually unstructured plankton distributions@Fig. 2~c! for f
50.395# in the fish-populated habitat, and from regular@Fig.
2~a!# to irregular @Figs. 2~b!,2~c!# patterns in the fish-free
habitat. Note that the interaction between the patches is
sential to disturb the initially homogeneous distribution
otherwise no pattern could occur. Hence, pattern forma
may be due to diffusive interactions of the spatially distr
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uted systems with different local dynamics.
In order to demonstrate the dependence of the plank

spatial patterns on the fish predation rate in more detail,
construct the pattern bifurcation diagram. Figure 3 shows
plankton abundance as a function of positionx ~the horizon-
tal axis! calculated att55000 for different values off ~the
vertical axis! from f 50 to f 50.395. One can see that for th
fish-populated habitat, the structures with larger inner sc
characteristics for the smallerf transform into small-scale
irregular patterns asf is growing, and then to the nearl
homogeneous plankton distributions as the local dynamic
the system passes through the Hopf bifurcation, cf. Fig. 1
contrast, in the fish-free habitat the Hopf bifurcation is n
accompanied by essential changes in plankton spatial s
ture ~Fig. 3!.

IV. TEMPORAL DYNAMICS OF THE PLANKTON
ABUNDANCE

To study temporal dynamics of the plankton abundan
we use valuesupi(t)u and uhi(t)u, i.e., the length of the vec
tors characterizing phytoplankton and zooplankton den
distributions in each of the habitats:

pi~ t !5@pi1~ t !,pi2~ t !, . . . ,pik/2~ t !#, ~5!

hi~ t !5@hi1~ t !,hi2~ t !, . . . ,hik/2~ t !#, ~6!

wherei 51 corresponds to the fish-populated habitat,i 52 to
the fish-free one,k is the number of cells of the numerica
mesh.

It emerges that the temporal dynamics ofupi u and uhi u
depends significantly on the fish predation ratef. As an ex-
ample, Figs. 4~a! and 4~b! demonstrate the temporal dynam
ics of zooplankton densities for fish-populated and fish-f
patches, correspondingly. There exist three main types of
5-3



ALEXANDER B. MEDVINSKY et al. PHYSICAL REVIEW E 64 021915
FIG. 3. Pattern bifurcation diagrams for phytoplankton and zooplankton obtained after 500 000 iterations;x is the spatial coordinate,f is
the fish predation rate. These diagrams are shown in the same gray color scale as patterns in Fig. 2.
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dynamics:~i! regular oscillations~when f is small!; ~ii ! ir-
regular oscillations in both fish-populated and fish-fr
patches~asf increases!; ~iii ! virtually constant plankton den
sity in the fish-populated patch while irregular oscillatio

FIG. 4. Three main types of oscillations of the valuesuh1(t)u
and uh2(t)u depending onf. ~a! At x<32 ~fish-populated habitat!
and ~b! at x.32 ~fish-free patch!.
02191
appear in the fish-free habitat~when f undergoes further
growth and becomes larger than the critical value charac
istic of the Hopf bifurcation; see Fig. 1!. The temporal be-
havior of the phytoplankton densityupi u is qualitatively the
same. Notice the increase of the averaged in time leve
zooplankton asf is growing ~Fig. 4!. It is likely due to dif-
fusion of phytoplankton that zooplankton is grazing on fro
the fish-free habitat where phytoplankton abundance
higher ~not shown! into the fish-populated one where ph
toplankton abundance is lower.

One can see a clear correspondence between the
types of the temporal behavior of the densitiesuhi u ~Fig. 4!
and the spatiotemporal patterns in Fig. 2. Namely, regu
and irregular patterns lead to regular and irregular osci
tions of upi u anduhi u, respectively, while nearly homogeneou
patterns lead to virtually constant plankton density. It sho
be mentioned that not only a type of temporal behavior
also the range of regular oscillations ofupi u anduhi u depends
on the fish predation rate~Fig. 5!.

It is noteworthy that in contrast to regular regimes irreg
lar ones are characterized by positive values of at least
first Lyapunov exponents~see Appendix, Tables I and II!.
This implies high-dimensional chaos responsible for the
regular plankton dynamics.

In order to demonstrate the chaotic nature of the plank
dynamics in more detail we study the dependence of
5-4
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PATCHY ENVIRONMENT AS A FACTOR OF COMPLEX . . . PHYSICAL REVIEW E64 021915
plankton oscillations on initial conditions. Figure 6 show
two attractors obtained at slightly different initial zooplan
ton densities but under the same set of the model parame
One can see that very small changes in starting condit
can lead to both regular oscillations of the plankton ab
dance@Fig. 6~a!# and the chaotic plankton dynamics. Thu
there are two basins of attraction, one associated with eac
the two attractors.

Interestingly, there is a large region of the initial zoo
lankton densities for which the basin of attraction to the lim
cycle is interleaved in a complicated way with the basin
chaotic attractor. To demonstrate this, we consider the pla
ton dynamics starting from a sequence of initial zooplank
densities. Figure 7 shows which initial conditions lying
the range between 0.3 and 2.7 lead to the limit cycle@Fig.
6~a!# and which ones to the chaotic attractor@Fig. 6~b!#; ini-
tial conditions that approach the chaotic attractor are sha
white while all the initial densities leading to regular osc
lations are shaded black. One can see that zooming in
section of the whole range~for example, 1.8<uh1(0)u
5uh2(0)u<2.55) reveals additional structure and shows t
the seemingly continuous black zones are in fact broken
smaller ones. As we try to define more precisely the bou
ary between the basins of attraction, we see an increasi
fractured boundary~Fig. 7!. The basins of attraction from
these zooplankton densities for both regular and chaotic
cillations are fractal—and are a type of Cantor set. But th
is a region of initial zooplankton densities adjacent
h1(0)5h2(0)52.7 that is continous, nonfractal. All the tra
jectories starting from this region lead to the chaotic attrac
~Fig. 7!.

V. CONCLUDING REMARKS

Recently, we have shown that plankton patchiness ca
influenced by spatiotemporal fish dynamics@7,22,23#. In

TABLE I. Values ofl1. a,b,c,d correspond to the zooplankto
distributions shown in Fig. 8.

a b c d

0.0172 0.0166 0.0171 0.0165

FIG. 5. The dependence of regular oscillations ofup1(t)u and
uh1(t)u on the fish predation rates.
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turn, fish-school behavior is found to be dependent on
plankton spatiotemporal dynamics@7,14,16,18,23,37#. The
results presented in this paper show that plankton patchi
can be due to fish abundance gradients in the patchy e
ronment. Hence, fish-plankton interplay, along with hydrod
namic factors@19–21# can be considered as an essential
ement of spatiotemporal plankton community functioning

Plankton communities often show large fluctuations
both zooplankton and algal biomass. Such irregular patte
can be sometimes explained by inaccurate sampling or
stochastic environmental effects on the population un
study. At the same time, irregularity in plankton dynami
can be due to the chaotic rather than stochastic nature o
processes underlying spatiotemporal changes in the plan
abundance. Unfortunately, it is not easy to find experimen
support for chaos in aquatic communities. However,
analysis of field data@36# indicates that the recorded dynam
ics of diatom communities can be chaotic. Our results sh
that irregular plankton dynamics can arise as a result of
coexistence of at least two attractors with Cantor setlike
sins of attraction. It is difficult if not impossible to predic
which basin will attract a particular trajectory unless ve
precise information is available about the initial conditio
~see Fig. 7!. Even weak external noise renders the syst
unpredictable. Our results also show that chaotic plank

FIG. 6. Sensitivity to initial conditions. The stable limit cycle~a!
and chaotic attractor~b! are obtained at slightly different initia
zooplankton densities differing only by 0.0001. Heref 50.18.

TABLE II. Values of l2. a,b,c,d correspond to the zooplank
ton distributions shown in Fig. 8.

Zooplankton distributions a b c

b 0.0163
c 0.0169 0.0172
d 0.0164 0.0160 0.0165
5-5
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ALEXANDER B. MEDVINSKY et al. PHYSICAL REVIEW E 64 021915
dynamics and corresponding irregular spatial patterns ca
found in a wide region of the values of the fish predation r
~Figs. 2–4!. This may indicate the vital role of chaotic re
gimes in the spatiotemporal organization of aquatic ecos
tems.
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APPENDIX

The maximal Lyapunov exponentl1 is well known to be
determined in the following way. Leth(t) andh0(t) be two
points in state space with distanced(t)5ih(t)2h0(t)i ,
d(t1)!1; tP@ t1 ,t2# ~here t15450.01; t251250) between
the two trajectories going through these points at timet. To
specify the distanced(t), we use four different vectors
h(1)(t), h(2)(t), h(3)(t), andh(4)(t) describing zooplankton
distributions slightly disturbed at the momentt1 as it is
shown in Fig. 8, and the vectorh(0)(t) describing undis-
turbed zooplankton distribution as a ‘‘control’’ one. Then,l1
is determined by

ln d~ t !;l1t; d~ t !!1.

The values ofl1 obtained in four different disturbance situ
ations~Fig. 8! are given in Table I. One can see that all t
values are close to each other and positive.

Similarly,

ln V2~ t !;lt.

Here,l5l11l2, andV2 is a volume in a state space th
can be defined in different ways. In order to calculate
volumeV2, we use various combinations of the pairs of t
zooplankton vectorsh(1)(t), h(2)(t), h(3)(t), h(4)(t), and
h(0)(t) specified as above. Here,

V25Adet~CCT!

FIG. 7. Fractal structure of the attractor basins. Initial conditio
that approach the chaotic attractor are shaded white, and in
conditions leading to regular oscillations are shaded black.
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where

C5S v

wD 5S v1 . . . v64

w1 . . . w64
D ,

the time-dependent vectorsv andw are, for example, speci
fied in the following way:

v~ t !5h(0)~ t !2h(1)~ t !,

w~ t !5h(0)~ t !2h(2)~ t !,

and CT is the transposed matrixC. The second Lyapunov
exponent

l25l2l1 .

Examples obtained in such a way values ofl2 ~for l1
50.0172) are given in Table II. All these values are posit
and obviously close to each other. The values of Lyapun
exponentsl3 andl4 from the Lyapunov spectrum characte

s
ial

FIG. 8. Four types (a, b, c, andd) of the disturbances of the
zooplankton distribution at the momentt1 leading to the four dif-
ferent vectorsh(1), h(2), h(3), andh(4) correspondingly.
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izing the plankton dynamics are calculated in the sim
way. All the values ofl3 andl4 are also found to be posi
tive.

The corresponding Lyapunov exponents for phytopla
ton are also positive, which is not surprising since the p
toplankton dynamics is closely related to the zooplank
A

T.

l-

A.

ol

, S

,

02191
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dynamics. Many authors have reported on an inverse r
tionship between phytoplankton and zooplankton densit
i.e., phytoplankton density is lower in the regions whe
zooplankton density is higher andvice versa. Such an in-
verse relationship is an apparent consequence of phytopl
ton grazing by zooplankton~cf. @12#!.
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